
In Dodo-Goldilocks, several chunks of bright
material 1.5 to 2 cm across were dislodged by the
RA on sol 20 (17) and had disappeared by sol 24
without any obvious residue (fig. S8, A and B).
This is expected for H2O ice. Over the next 2
months, the material in the trench sublimated by
several mm (fig. S8C). Pore ice has been predicted
by thermodynamical arguments (18), but the ex-
posure of nearly pure ice usually requires a liquid
phase or brine on Earth. If dominant in the region,
this supports the Odyssey GRS conclusion that ice
concentrations exceed pore ice (5, 19, 20).

Because attempts to collect and to deliver
ice-cemented soil materials to the TEGA ovens
were not successful, we sampled sublimated
till material at the bottom of one trench (Snow
White) on sol 63. A small, endothermic peak
was observed (fig. S9) coincident with the melt-
ing of ice with an onset temperature at –2°C and
a peak around 6°C. Evolved water was recorded
by TEGA’s mass spectrometer as the tempera-
ture increased from –20° to +35°C.

Integration of the endothermic peak provides
an estimate of the enthalpy of 0.35 J, which cor-
responds to 1.0 mg of water ice. If we assume
that the TEGA oven was full, this sample con-
tained ~2% ice. Because this sample was a sub-
limated lag, this does not represent the ice
concentration in the ice layer.

Early in the mission, the RA pointed its cam-
era under the lander to assess the footpad stability
and captured an image of the ice table excavated
by the 12 thrusters (Fig. 3A and fig. S3). The
curved shadow of the strut provides a means to
estimate its depth as 5 cm. The strut to the left of
the image shows a number of blobs that have
been interpreted as liquid brine splashed onto
the strut during the last few seconds of landing
(21). Perchlorate brines can have eutectic tem-
peratures as low as –70°C once the perchlorate
concentration reaches 30 to 50%. The planetary
distribution of brines is unknown, if they exist
at all, but salts do tend to concentrate with the
presence of small amounts of water.

Atmospheric water vapor was measured reg-
ularly by using the TECP (fig. S10). Water vapor
partial pressure remained near 2 Pa throughout
most days, dropping rapidly at 18. local true solar
time (LTST) to a minimum of <0.05 at 1.5 LTST.
Vapor pressure of 2 Pa is about that of saturation
over ice at 210 K. The water vapor measurements
and 2-m air temperatures suggest that the typical
mid-sol relative humidity was ~5%. The air was
close to saturation at night early in the mission and
was saturated toward the end, as seen via ground
fog and low clouds (22). Surface temperatures are
expected to be colder than thosemeasured at 2 m,
and indeed frost formation was observed in the
second half of the mission (Fig. 3B).

Water ice clouds were detected by the light
detection and ranging (LIDAR) (23) instrument
as layers of enhanced back scatter. Near summer
solstice, the most prominent clouds were detected
at heights above 10 km. As the season progressed
and the polar atmosphere cooled, clouds formed

in the boundary layer in late summer [after solar
longitude of Mars (Ls) = 117°], and fall streaks
are clearly seen in the LIDAR observations (22).
Late at night water ice was observed to fall from
the clouds at 4 km altitude, and ground fogs
were seen in the lower ~700 m of atmosphere
(22). This diurnal cycle deposited ice onto the
surface at night, reducing the vapor pressure to
low values (fig. S10), sublimated it in the morn-
ing, and redistributed it throughout the planetary
boundary layer in the turbulent afternoon. Near
midnight, ice clouds formed and precipitated a
portion of the atmospheric H2O back to the sur-
face in the early morning.

Orbital dynamics and particularly obliquity
variations strongly influence the martian climate
(24) and offer the possibility of liquid water in
the recent past. As the obliquity exceeds 30°, the
polar cap becomes warmer and increasingly un-
stable, releasing water vapor into the atmosphere.
Models predict a wetter environment when the
summer temperatures are able to exceed 0°C (25).

The pressure at the Phoenix landing site is
always higher than the triple point pressure.
Several lines of evidence support liquid films
of water in the soil in the recent past: CaCO3

identified by TEGA (13) likely forms in a wet
environment, segregated ice (fig. S8, A to C) is
a signature of frozen liquid water, soil is often
cemented by wetted soils, and the likelihood of
thicker snowfalls melting during the warmer days
at high obliquity. This evidence for periodic liq-
uid water in an alkaline environment with a
sprinkling of various salts and a perchlorate en-
ergy source (15) implies that this region could
have previously met the criteria for habitability
during favorable Milankovich cycles.
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Evidence for Calcium Carbonate at the
Mars Phoenix Landing Site
W. V. Boynton,1* D. W. Ming,2 S. P. Kounaves,3 S. M. M. Young,3† R. E. Arvidson,4
M. H. Hecht,5 J. Hoffman,6 P. B. Niles,2 D. K. Hamara,1 R. C. Quinn,7 P. H. Smith,1
B. Sutter,10 D. C. Catling,8,9 R. V. Morris2

Carbonates are generally products of aqueous processes and may hold important clues about the
history of liquid water on the surface of Mars. Calcium carbonate (approximately 3 to 5 weight
percent) has been identified in the soils around the Phoenix landing site by scanning calorimetry
showing an endothermic transition beginning around 725°C accompanied by evolution of carbon
dioxide and by the ability of the soil to buffer pH against acid addition. Based on empirical
kinetics, the amount of calcium carbonate is most consistent with formation in the past by the
interaction of atmospheric carbon dioxide with liquid water films on particle surfaces.

The key to understanding Mars’ past cli-
mate is the study of secondary minerals
that have formed by reaction with volatile

compounds such as H2O and CO2. A wet and
warmer climate during the early history of Mars,
coupled with a much denser CO2 atmosphere,
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are ideal conditions for the aqueous alteration of
basaltic materials and the subsequent formation
of carbonates (1, 2). Although Mg- and Ca-rich
carbonates are expected to be thermodynamically
stable in the present martian environment (3, 4),
there have been few detections of carbonates on
the surface by orbiting or landed missions to
Mars. Earth-based thermal emission observations
of Mars were the first to indicate the presence of
carbonates in the martian dust (1 to 3 volume per-
cent) (5). Mg-rich carbonates have been suggested
to be a component [2 to 5 weight percent (wt %)]
of the martian global dust based on the presence of
a 1480 cm−1 absorption feature in orbital thermal
emission spectroscopy (6). A similar feature was
observed in brighter, undisturbed soils by the
Miniature Thermal Emission Spectrometer on the
Gusev plains (7). Mg-rich carbonates have recent-
ly been identified in the Nili Fossae region by the
Compact Reconnaissance Imaging Spectrometer
for Mars instrument onboard the Mars Reconnais-
sance Orbiter (8), prompting the idea that the Mg-
rich carbonates in the dust might be due to the
eolian redistribution of surface carbonates. Car-
bonates have also been confirmed as aqueous al-
teration phases in martian meteorites (9–11).

Here, we describe observations made by in-
struments on the Phoenix Lander relevant to
the identification of calcium carbonate in the soil:
the Thermal and Evolved-Gas Analyzer (TEGA),
which is similar to the TEGA instrument flown
on the Mars Polar Lander (12), and the Micros-
copy, Electrochemical, and Conductivity Analyzer
(MECA) (13). TEGA consisted of eight thermal
analyzer cells that each contained an oven in which
samples were heated up to 1000°C at a controlled
ramp rate, with the necessary power recorded for
calorimetry. Any gases that were generated from
the heated samples were carried to the evolved-
gas analyzer by a N2 carrier gas maintained at
12 mbar oven pressure (14). The MECA con-
tained a Wet Chemistry Laboratory (WCL) that
consisted of four analyzer cells, each of which
added an aqueous solution to the soil and mea-
sured electrchemical parameters such as pH and
the concentrations of various ions before and
after the addition of various chemical reagents.

Soils analyzed by TEGA have similar ther-
mal and evolved gas behaviors. Here, we focus
on a subsurface sample dubbed Wicked Witch

(15). We looked for an endothermic phase tran-
sition by fitting a curve to the oven power as a
function of temperature and looked for dif-
ferences from the smooth baseline fit. For the
thermal analysis of a sample we routinely heated
the oven containing the sample a second time
with an identical temperature ramp within a day
or two after the initial heating and compared the
results to check for background transitions that
occurred in the oven itself.

A clear endothermic peak is seen between
725°C and 820°C, and there is another one be-
tween about 860°C and 980°C (Fig. 1). The phase
responsible for the 860°C peak is unidentified at
this time. The most likely phase candidate for
the 725°C endothermic reaction is a calcium-rich
carbonate mineral phase (e.g., calcite, ikaite, arag-
onite, or ankerite) (16). The area of the endo-
thermic peak is about 6 J. Based on the calcite
decomposition enthalpy of 2550 J/g (17) we esti-
mate that there is 2.4 mg of CaCO3 in the sample.
For a TEGA oven volume of 0.052 cm3, full with
a 1 g/cm3 sample, the concentration of CaCO3 is
about 4.5 wt % (18).

The amount of CO2 generated during the heat-
ing is shown in Fig. 2. There is a low-temperature
release between 400°C and 680°C, which may
be due to Mg or Fe carbonate, adsorbed CO2 con-
tained in a zeolite type phase, or organic mol-
ecules that are converted to CO2 by oxidants in
the soil. We made an independent estimate of
the amount of CaCO3 from the amount of CO2

generated at higher temperatures. The majority
of the high-temperature gas release appears to
happen at a temperature higher than that of the
oven phase transition (Fig. 2). There is a time
lag of about 3 min or 60° for the gas to reach the
EGA, but the observed time lag is greater than
expected (19). Pending laboratory studies, this
time lag may represent an interaction between
the CO2 and the walls of the plumbing. The area
under the peak corresponds to 0.66 mg of CO2,
which implies a concentration of 3 wt % CaCO3

in the sample. Based on the combined calorim-
etry and evolved gas results, the Wicked Witch
sample has on the order of 3 to 5 wt % CaCO3.

The WCL was designed to perform an assay
for carbonate using classical wet chemical meth-
ods based on sample acidification. After 25 mL
of water and a calibrant were added to the WCL
beaker, soil was added and the pH was measured
for a period of time. After a 4-sol freeze and sub-
sequent thaw, 2.5 × 10−5 mole of 2-nitrobenzoic
acid was dispensed into the soil solution (20).
The pH was monitored by two ion selective poly-
mer membrane pH electrodes and an iridium
oxide pH electrode (13). Based on the acid dis-
sociation constant (pKa) of 2-nitrobenzoic acid,
the pH of the WCL solution should be 3.2 after
acid addition in the absence of buffering.

After a surface sample dubbed Rosy Red (15)
was added, the pH of the WCL leaching solu-
tion rose to 7.7 T 0.5, a value consistent with the
pH of a carbonate buffered solution and a par-
tial pressure of CO2 (PCO2) of ~ 3 mbar in the
WCL headspace (Fig. 3A). Over the course of
sols 30 to 34, the pH reading decreased slightly
to pH 7.5 T 0.5, possibly due to changes in
headspace PCO2, temperature, or intrinsic sensor
drift. The addition of acid to the sample solution
did not change the pH, confirming that the sys-
tem is buffered by carbonate (Fig. 3B). The
addition of the acid was confirmed by WCL
cyclic voltammetry measurements, which detect
the presence of 2-nitrobenzoic acid in solution.
If calcium carbonate is the only saturated car-
bonate species present and thermodynamically
independent of other equilibrium reactions, its
solubility product Ksp will determine the up-
per limit of Ca2+ concentration in solution. The
measured Ca2+ concentration in the Rosy Red
soil solution of 5.5(T3.0) × 10−4 M is consistent
with a PCO2 of ~  3 mbar and a saturated
calcium carbonate solution (21).

Assuming that a 1 cm3 sample with a density
of 1 g/cm3 was added to the WCL cell, equilib-
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rium calculations based on the measured ion
concentrations in solution and the quantity of
acid added show that the amount of calcium
carbonate needed to neutralize the acid is 0.3%
by weight. Lacking a full titration of the amount
of carbonate, this quantity is only a lower limit to
the concentration of calcium carbonate in the soil.
Two other samples, both subsurface samples
from the Sorceress location (similar to Wicked
Witch), were shown also to contain ≥ 0.3% of
calcium carbonate by weight. The WCL results

are entirely consistent with the TEGA calorim-
etry and evolved-gas data, which strongly sug-
gest the presence of calcium carbonate in the
soils around the Phoenix landing site.

Low-temperature carbonate dissolution and
precipitation are among the most important ped-
ogenic processes in terrestrial semiarid to arid
soils (22). Carbonates precipitate as coatings
on soil particles and in soil pores that can result
in cementation of particles. Calcium carbonate
generally precipitates by reaction of CO2-charged

water with Ca2+ released by dissolution of parent
materials. Soils at the Phoenix landing site are
in physical proximity to an ice-cemented soil
layer several cm under the surface and are cov-
ered with a surface frost during the winter. These
water reservoirs suggest the diffusion of water
vapor through the soils (23) and the possibility of
films of unfrozen water on particle surfaces. The
latter can weather basaltic minerals and mobilize
ions (24, 25). Given that atmospheric CO2 would
dissolve in these thin films, calcium carbonate
would precipitate if the water film becomes super-
saturated. These precipitation events may be fa-
cilitated by the evaporation of the thin films during
diurnal or seasonal cycles and may be much more
frequent during periods of high obliquity (26).
Another possibility for the formation of calcium
carbonate is by hydrothermal aqueous alteration
associated with an impact event or other thermal
source (e.g., volcanic). An impact event into a
volatile-rich target (i.e., ice and ice-cemented
sediments) would rapidly melt and/or vaporize
the ice, resulting in localized hydrothermal con-
ditions. The Phoenix landing site lies on the ejecta
of the Heimdall crater, which is located 20 km
away. Consequently, calcium carbonate formed
in the subsurface may have been transported to
the Phoenix site by the excavation of subsurface
material during the impact event that formed
Heimdall. In this case, calcium carbonate has
persisted in the soil since the impact event, ~0.5
billion years ago (27).

There are nonaqueous processes that can
form carbonates, but the reaction rates appear to
be far too small to account for the amount of
calcium carbonate that we find (28). The pres-
ence of several percent by mass of calcium car-
bonate in the soil at the Phoenix site is of the
expected magnitude if there has been periodi-
cally wet or damp martian soil in the geologic
past, but it is difficult to produce under current
martian conditions. This inference applies even
if the calcium carbonate has been transported to
the Phoenix site by wind, because the calcium
carbonate would still have formed in damp or
wet soil elsewhere on Mars. Two possible objec-
tions are (i) that the carbonate might be mag-
matic (e.g., carbonatites) and (ii) that the soil
particles might have an abnormally large spe-
cific surface area, which would make a larger
mass fraction of dry carbonate formation more
feasible. There is, however, no evidence to sup-
port either objection. For the latter, preliminary
analysis of microscopic imagery (29) indicates a
modest specific surface area. Consequently, the
simplest explanation is that the amount of car-
bonate provides geochemical evidence of past
liquid water.

The presence of calcium carbonate in the soil
has implications for our understanding of Mars.
Calcium carbonate buffers an alkaline pH, which
is similar to that of many habitable environments,
notably terrestrial seawater. Another implication
of the presence of calcium carbonate is that var-
ious ions may be adsorbed at exposed Ca2+ lat-
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tice sites of calcium carbonate and affect Mars’
soil geochemistry, and calcium carbonate can
cement small soil grains and change the phys-
ical properties of the surface of Mars.
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Detection of Perchlorate and the
Soluble Chemistry of Martian Soil at
the Phoenix Lander Site
M. H. Hecht,1* S. P. Kounaves,2 R. C. Quinn,3 S. J. West,4 S. M. M. Young,2† D. W. Ming,5
D. C. Catling,6,7 B. C. Clark,8 W. V. Boynton,9 J. Hoffman,10 L. P. DeFlores,1 K. Gospodinova,2
J. Kapit,2 P. H. Smith9

The Wet Chemistry Laboratory on the Phoenix Mars Lander performed aqueous chemical analyses
of martian soil from the polygon-patterned northern plains of the Vastitas Borealis. The solutions
contained ~10 mM of dissolved salts with 0.4 to 0.6% perchlorate (ClO4) by mass leached from
each sample. The remaining anions included small concentrations of chloride, bicarbonate, and
possibly sulfate. Cations were dominated by Mg2+ and Na+, with small contributions from K+ and
Ca2+. A moderately alkaline pH of 7.7 T 0.5 was measured, consistent with a carbonate-buffered
solution. Samples analyzed from the surface and the excavated boundary of the ~5-centimeter-
deep ice table showed no significant difference in soluble chemistry.

The elemental composition of the martian
surface has been measured in situ by the
two Viking landers (1), the Mars Path-

finder lander (2), and the two Mars Exploration
Rovers, Spirit andOpportunity (3, 4) with the use
of x-ray fluorescence spectrometry. Elemental

analysis does not, however, predict the solution
chemistry of the soil (5), which is important
because it is the soluble constituents that are of
primary importance to biological activity, pre-
biotic organic synthesis, and the thermophysical
properties of any liquid solution. The only prior
aqueous experiments were by the Viking missions
in 1976, but these focused on specific protocols
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